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ABSTRACT

A method is presented to evaluate the workspace variation of a Stewart platform based machine
tool.  Three sets of constraints, covering strut lengths, platform and base spherical joint angles, and
strut collisions, are formulated using inverse kinematics.  Recognizing the need to vary the
platform orientation during machining, an algorithm to efficiently calculate the workspace is
developed.  Computer implementation provides a powerful tool to study the dynamic variation of
the workspace as the spindle platform changes orientation.  A case study is presented on the
workspace variation of a prototype hexapod machine tool as a function of platform orientation.
The results demonstrate the shift in size and location of the workspace as the platform orientation
changes.  The workspace analysis tools presented can be used to maximize the versatility of
Stewart platform based machines and avoid violation of workspace constraint conditions.

1. INTRODUCTION

Improving product quality, reducing product cost, and shortening the product development
cycle have always been critical for companies to stay competitive.  These competitive drivers result
in a continuing need to achieve improvements in accuracy, speed, and versatility in machining
operations.  These pressing needs pose challenges to the machine tool research community and
have driven several machine tool companies to revisit some of their basic assumptions about
machine tool design. As a result, prototypes of a new class of machine tools based on parallel
kinematic structures have been introduced.

Among parallel mechanisms, the six degree-of-freedom Stewart platform has recently been used
in a number of new machine tool designs (Stewart 1965).  The Stewart platform is characterized
by high force-torque capacity, high structural rigidity, and low moving mass.  Several prototypes
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of Stewart-platform-based machine tools, typically called hexapods, have been produced by
Giddings & Lewis, Hexel Corporation, and the Ingersoll Milling Machine Company1.

Although the versatility of hexapod machine tools has been recognized, their acceptance by
industry as production equipment has not yet occurred.  Some obstacles to this include their current
high cost and unproven performance in a production environment.  Furthermore, the fact that their
workspace is not constant, but varies with platform orientation, means that in certain cases their
use is not as straightforward as traditional machine tools.

During the past decade, several researchers (Gosselin 1990, Kumar 1992, Ji 1994, Luh et al.
1996) have performed studies of the workspace of Stewart platforms.  Most of these studies
focused on the workspace restrictions due to limited strut lengths and/or joint angles.  Few of them
have integrated other important constraints, such as avoiding strut collisions, into workspace
modeling.  In addition, little work has been done on determining dynamic variation of the
workspace caused by changes in platform orientation.  Such a study is essential since the variation
of the platform orientation is an integral part of hexapod machining operations.

Recognizing the need to provide information for the planning of machining operations, this
paper presents a new study to characterize the workspace of hexapod-type machine tools.  In the
analytical aspect, the paper presents the formulation of three constraint sets, including the
consideration of strut collision, using the method of inverse kinematics.  In the experimental aspect,
numerical values of the limiting strut lengths and joint angles are taken from a prototype
Octahedral Hexapod machine tool built by the Ingersoll Milling Machine Company and installed at
the National Institute of Standards and Technology (NIST).  Visualization of the workspace in 3-
dimensional and 2-dimensional space is presented to depict the dynamic nature of the workspace as
the platform changes orientation.  To demonstrate the efficiency and robustness of the proposed
approach, the workspaces obtained from the early work done by Gosselin (1990) and Luh et al.
(1996) will be reconstructed.

2. STEWART PLATFORM WORKSPACE CHARACTERISTICS

When Stewart introduced his six degree-of-freedom mechanism in 1965, a reviewer of his paper
suggested that the mechanism could provide the basis for a new type of machine tool.  It has not
been until recently, though, that computing power and control algorithms have reached the level of
cost and sophistication necessary to make this idea feasible. However, efficient use of Stewart
platform based machine tools requires operators and production engineers to have an understanding
of how parallel mechanism machine tools carry out machining operations.  In particular, a basic
understanding of the machine’s workspace will allow users to determine the suitability of hexapod
machine tools to their own machining tasks.  This knowledge will also allow users to identify
locations of the machine tool’s work volume where specific machining operations may take place.

For conventional machine tools, the concept of workspace is straightforward.  It is usually a
rectangular parallelepiped volume specified by three indexed numbers representing the maximum
machine travel in the x, y, and z directions.  The workspace remains unchanged during machining,
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available for the purpose.
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except when changes are made to the tool offset.  For a Stewart platform, however, the irregularly
shaped workspace varies in volume, shape, and position as the platform orientation changes.  Such
differences characterize the advantages and challenges presented to operators on the shop floor
when using this new type of machine tool.  For example, hexapod users may have to estimate the
maximum size of parts able to be machined based on the complexity of the part geometry presented
to them.  Therefore, this workspace study is important in increasing the usability of hexapod
machine tools.

Before we present the algorithm developed in this research to determine the workspace, we need
to define the term workspace as the three-dimensional space the tip of the cutting tool can reach at
a given platform orientation.  For simplicity, in this research we define the workspace as the
volume of space that the nose of the spindle can reach.  The user can arbitrarily set the tool offset
in the algorithm for specific workspace studies.  Since an infinite number of platform orientations
are possible, it follows that an infinite number of workspace plots may exist for a specific hexapod
machine.  This fact points out the necessity and importance of the work presented in this paper.

3. FORMULATION OF WORKSPACE CONSTRAINTS

The hexapod machine tool (Figure 1) located at the National Institute of Standards and
Technology serves as a case study for our proposed method of workspace determination.  As
illustrated, the machine tool consists of a movable platform supported by six struts.  A cutting tool,
such as an end mill, is placed in the spindle of the movable platform.  In this configuration,

                                    
Figure 1. Solid model of Octahedral Hexapod machine installed at NIST (spindle motor not

shown).

a part to be machined is fixed on the table and kept stationary during machining.  It is the motion
of the platform in three-dimensional space, which carries out the machining operation.  Unlike most
Stewart platforms, however, the hexapod under study inverts the 6-DOF movable platform and
suspends it from an octahedral space frame.  The workspace of this machine is defined by three
constraints:
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1. The limiting lengths, or maximum and minimum lengths of the six struts.
2. The limiting angular travel limits of the twelve spherical joints.  Among them, six

joints are associated with the stationary base; the other six joints are associated with
the movable platform.

3.  Possible collisions between individual struts.

To formulate the three constraint sets determining the workspace, the machine’s inverse
kinematics are calculated.  For a given position and orientation of the platform in the three-
dimensional work volume, the corresponding strut lengths and spherical joint angles can be
determined (Fichter 1986).  In this research, two coordinate systems, the base and the platform
coordinate systems, are introduced, as illustrated in Figure 2.  The position and orientation of the

Figure 2. Base and platform coordinate systems.

movable platform can be represented by a position vector and a set of three angles in the base
coordinate system as follows:
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In addition, the Stewart platform geometry gives us the positions of the six platform joints, Pi,
relative to the platform coordinate system, along with the six base joints, Bi, relative to the base
coordinate system, as illustrated in Figure 2.  To calculate the platform joint position vectors in the
base coordinate system, they must be rotated and translated.  The rotation transform is given by:

R Pi R Pi
v v

= α β γ for i=1..6.

The translation transformation is a sum of the rotated platform vectors and the platform position
vector, giving the position of the platform joints relative to the base coordinate system as follows:

BASE RPi T Pi
v v v

= + .

As illustrated in Figure 3, the strut vectors, 
v
Si are determined by:

v v v
Si Pi Bi

BASE= − .

Figure 3. Inverse kinematic vectors.

3.1 Constraint Set I: Limiting Strut Lengths

Strut lengths, Li, represent the first major workspace constraint for extensible-leg hexapod
machines. They are computed using the following inverse kinematic equation:

Li Si T R Pi Bi= = + −
v v v v

α β γ .

For each of the six struts, its length must adhere to the following physical limits:

L Li Lmin max< < for i=1..6.
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3.2 Constraint Set II: Spherical Joint Angular Limits

The hexapod under study has twelve spherical joints that connect the struts to the platform and
base.  As illustrated in Figure 2, six of these spherical joints are located on the platform, and the
other six are on the base.  These spherical joints allow the struts to freely change orientation as the
platform moves.  However, the spherical joints themselves are physically limited to a maximum
angle (θ max) due to the physical constraints of the spherical joints and to prevent collisions with the
base structure.

Note that the spherical joint angles of the Stewart platform are measured relative to the nominal
strut vectors.  The strut vectors are nominal when the spherical joint angles (both base and
platform) equal zero.  The nominal strut vector simply provides a reference for spherical joint
angle calculations.  The six unit strut vectors, $si , and six nominal unit strut vectors, $sinom

, are

determined by:

$si
Si

Si
=

v

v  ,     $s
Si

Si
i nom

nom

nom

=

v

v  for i = 1..6.

The magnitude of the base spherical joint angle is determined by:

( )θ i Base si sinom
= − ⋅cos $ $1 for i = 1..6.

To determine the platform spherical joint angles, we first rotate the nominal unit strut vectors:
R si R sinom
$ $= α β γ .

The dot product of the unit strut vector and the rotated nominal unit strut vector then gives the
magnitude of the corresponding platform spherical joint angle as follows:

( )θ i Platform si si
R

nom
= − ⋅cos $ $1 for i = 1..6.

It should be pointed out that the sphere angle of a spherical bearing has its allowable range because
of its structural design.  Therefore, the six base sphere angles and six platform sphere angles
represent another important set of constraints to define the workspace of the hexapod machine tool.
In other words, the base and platform sphere angles must adhere to the following physical limits.
These constraints are given by

θ θi Platform i Max Platform< for i = 1..6,

θ θi Base i Max Base<  for i = 1..6.

3.3 Constraint Set III: Avoiding Strut Collision

Examining Figure 1, the geometry of the hexapod under study does not preclude the possibility
of collisions between the individual struts during the movement of the platform.  Although
somewhat simplistic, for the tools developed here it was deemed sufficient to evaluate this
constraint by computing the mutually perpendicular distance between the (non-coplanar) strut
centerlines and comparing it with a minimum value (slightly larger than the strut diameter).

To compute the mutually perpendicular distance between a pair of struts {i,j}, the following
procedure is used (see Figure 4):
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(1)      A unit vector û normal to both strut vectors is computed:

||
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j
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×
= .

(2)  The distance between the two struts is determined using
urjiD ji ˆ, ⋅= v ,

   where ijji BBr
vvv −= .

It should be pointed out that with the geometry of the experimental hexapod shown in Figure 1,
only strut collisions between the closely paired struts are a concern.  This represents the final set of
constraints on the work volume of the machine:

{ D1,2  D3,4  D5,6 }  >  Dmin.

Figure 4. Vectors for computing the distance between strut centerlines.

3.4 Other Workspace Constraints

In this paper, we have presented the formulation of three constraint sets for determining the
workspace of a particular hexapod machine tool, considering limitations on the strut lengths, joint
angles, and strut collision.  The algorithm presented should be able to include other forms of
workspace constraints.  Such constraints could be due to possible collisions of the struts with the
part being machined or other external objects, and/or a different strut/joint arrangement than the
hexapod machine tool used in the current investigation.
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4. COMPUTER IMPLEMENTATION

The algorithm described in this paper was developed in the C++ language for its portability and
object-oriented features.  The Matlab software package was then used to graphically display the
workspace.  The entire implementation consists of five steps:

1.  Define a function, called TestPose, which returns the evaluation result, either true
or false.

2.  Implement a search routine to determine the approximate workspace center.
3.  Implement an error criterion to determine the workspace boundary.
4.  Evaluate the workspace volume.
5.  Graphically display the workspace.

4.1 TestPose Function

The TestPose function is defined as a Boolean function.  The function tests an arbitrary
position and orientation of the platform, or a pose of the platform, for constraint violation:

Boolean = TestPose( Tx, Ty,  Tz, α ,β ,γ).
The function first computes inverse kinematics and then verifies whether the constraint sets I,

II, and III are satisfied.  If all of the constraints are satisfied, then the function returns a value of
true.  If any constraint is not satisfied, it returns a value of false.  In other words, if the TestPose
function is true, the given position and orientation of the platform is reachable by the hexapod.

4.2 Workspace Search Algorithm

The workspace algorithm conducts a search to determine the workspace of the hexapod
machine tool with a given platform orientation, say O1  = {α 1 , β 1 , γ1 }.  The first step in the
workspace search is to determine the approximate workspace center, a general requirement to
initialize the workspace search.  This is done by searching a three dimensional grid containing
positions of the platform within the work volume of the machine.  For the position at the center of
the cube-shaped grid, the TestPose function checks for any constraint violations.  Using the results
obtained from testing these central positions, the approximate center of the workspace can be
determined.  This center will then serve as the origin of a spherical coordinate system used to
define the actual workspace boundary (Figure 5).  The major steps involved in the search process
are outlined below.

  

ρ

V

θ

Workspace
Vector

C

φ

Workspace
Center

Figure 5. Workspace search vectors.
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As illustrated in Figure 5, a workspace search vector, V, expressed in the spherical coordinates,
V = {ρ , θ , φ}, is introduced.  The vector, V, is considered to be at or near the workspace boundary
if the following workspace boundary condition is satisfied:

Workspace Boundary Condition
TestPose( ρ ,θ ,φ,O1 ) = True,
TestPose( ρ + ε ,θ ,φ, O1 ) = False.

The process of searching the entire space is accomplished by rotating the search vector in
discrete intervals ∆ θ  and ∆ φ.  The algorithm is presented by the following pseudocode.

Spherical Search Algorithm
θ  = 0º
loop while  θ  < 360º

φ = -90.0º
loop while  φ < 90º

find the radius that satisfies the Workspace Boundary Condition
φ = φ + ∆ φ

end loop
θ  = θ  + ∆ θ

end loop

4.3 Workspace Boundary Algorithm and Error Analysis

 The workspace search algorithm is based upon finding a ρ  that represents the boundary of the
workspace.  The algorithm to determine this boundary depends on one assumption made in this
research regarding the geometry of the workspace map.  We have assumed that if a point (θ ,φ,ρ 1 )
is found to violate the hexapod machine tool constraints, all points (θ ,φ,ρ 2 ) such that ρ 2 > ρ 1  will
also violate the hexapod constraints.  Based on this assumption, the procedure for finding the
boundary can be given by the following pseudocode for a successive approximation approach:

Workspace Boundary Algorithm
ρ  = value outside of the workspace
∆ ρ = ρ /2
loop while ∆ ρ > ε /2

if TestPose(θ ,φ,ρ , O1) =  true
ρ = ρ + ∆ ρ

otherwise
ρ = ρ − ∆ ρ

∆ ρ = ∆ ρ /2
end loop
if TestPose(θ ,φ,ρ , O1) = false

ρ = ρ − ε .
In terms of the accuracy at the end of the search process, Figure 6 graphically depicts the

variation of the search vector at the final stage of the search process.  As illustrated, the search
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Figure 6. Search algorithm error.

vector changes in ρ  until ∆ ρ <  ε /2  is reached, where ε  is set to 1.0 mm in the current work.  This
guarantees that ρ  is within ± ε  of the workspace boundary (Figure 6).  The last step in the
procedure is to subtract the final value of ρ  by ε  (if necessary) to guarantee that V lies within the
workspace boundary.  Thus, the possible error of the search algorithm at each point is between
zero and -ε .

4.4 Evaluation of the Workspace Volume

The workspace map is defined by numerous data points, V, centered about a search origin, C.
Let a sector be defined by four adjacent workspace data points, {V1, V2, V3, V4} and the
workspace search origin, C, as illustrated in Figure 8.  Summing the volume of all unique sectors
determines the total volume of a workspace map.  The volume of a sector (Figure 7) is
approximated as a four-sided pyramid by the following method:

1. Determine the average length of these four vectors:
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4. The volume of a specific sector can be approximated using the known base, width,
and height and is given by

V Vpyramid
base height width

sector
≈ =

× ×

3
.

5. The total workspace volume is determined by summing the calculated volumes of
all the sectors.

V Vworkspace tor
i

i
= ∑ sec

  

V1

V4
V3

V2

∆ φ ∆ α

C

Width

Base

Length

Figure 7. Workspace volume calculation.

The error of this method for computing the volume of a sphere was examined by comparing it
to the analytical solution (for a sphere of radius 1),

Vsphere = 4/3 π  r3  = 4.1888   where r = 1 .

Table 1 displays sphere volume calculations when various numbers of sectors are used.  As
expected, the error of the volume calculation algorithm decreases as the number of sectors that
define a workspace map increases.  The error using 1200 sectors is approximately 0.5%.  The
error is likely to be greater than this when the algorithm is used to compute actual workspace map
volume, since the algorithm probably works best for a sphere, and the actual hexapod workspace
maps deviate significantly from a spherical shape. Also, the results given in Table 1 below do not
include the contribution of errors in the radius estimates.

Table 1.  Sphere Volume Error Analysis.
Sectors Volume % Error Runtime
40 3.6962 11.8 to

180 4.0676 2.9 2 to

760 4.1586 0.7 18 to

∆ θ

ρ
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1200 4.1695 0.5 38 to

5. DISCUSSION OF RESULTS

5.1  Hexapod Workspace Plots

Figure 8a presents the workspace of the hexapod machine tool for a horizontal platform
orientation.  As shown in this figure, the upper half of the workspace is predominantly defined by
the minimum strut length limit.  The middle section of the workspace is defined by the base
spherical joint angle limits and the bottom of the workspace is defined by maximum strut lengths.
For a horizontal platform orientation, the workspace boundary is not determined by the platform
joint angle limits or strut collisions.  These constraints, however, become prominent for platform
orientations with large rotation angles.

Figure 8b gives a workspace simulation for a platform roll about the x-axis of 10º.  The general
shape is similar to the previous workspace with the exception of the platform joint limits.  This
platform orientation shifts the overall workspace in the positive y direction.  This shifting trend
continues with 20º of roll (Figure 8c).  In this case, the negative y side of the workspace becomes
defined primarily by platform sphere limits.  The hexapod workspace continues to shift in the
positive y direction as the platform roll deviates from the horizontal orientation.

An important aspect of the hexapod machine tool is that some sets of platform orientations lead
to workspaces, which share no regions of overlap.  Figure 9 displays three workspace plots for
three different platform orientations.  This workspace characteristic means that the machine cannot
necessarily move from one position and orientation to another in an arbitrary fashion. This example
highlights the need to carefully plan and check tool paths with orientation changes.

In addition to the hexapod under study, the method of workspace determination presented in this
paper can be applied to various other Stewart platforms.  The workspace of the INRIA prototype
(Gosselin 1990) for a horizontal platform orientation is presented in Figure 10.  This figure was
created using the workspace program with the geometry and workspace constraints of the INRIA
Stewart platform.  This workspace plot compares well with the analytical plot produced by
Gosselin.

The workspace of a Spatial Stewart Platform described in Luh et al. (Luh 1996) is graphed in
Figure 11.  This machine is used for flight simulator applications and is not limited by joint angle
constraints.
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Figure 8. Hexapod workspace examples (all dimensions in meters).
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Figure 9. Workspaces for (roll = 28°, pitch = 0°), (roll = -13.6°, pitch = 24.7°), and
(roll = -13.6°, pitch = 24.7°).

Figure 10. Workspace for INRIA Stewart platform— horizontal platform orientation       (Gosselin
1990).

Figure 11. Workspace for spatial Stewart platform— horizontal platform orientation (Luh 1996).

All dimensions in meters

All dimensions in meters

All dimensions in meters
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5.2 2-D Area Plots of Workspace

Quantitative insight into the workspace of the hexapod machine tool at NIST can be obtained
by plotting the cross section of the workspace at various heights.  Figure 12 displays cross sections
of the hexapod workspace as the platform rolls from 0º to 20º.  These plots represent the cross
section at three different heights, -2.6, -2.1, and -1.6 meters, measured from the base (upper)
coordinate system of the machine.  Examining the two-dimensional plots, we see that the cross
sectional area decreases and shifts its location in the positive y direction as the platform rolls
(rotates about the x-axis).

                

           

Figure 12. Workspace slices for hexapod at NIST (Z = -2.6, -2.1, and -1.6 meters in base
coordinates).
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Figure 13. Variation of X-Y workspace area as a function of spindle platform roll.

Figure 13 displays the normalized cross sectional areas of the hexapod’s workspace as a
function of roll for z levels of -2.6, -2.1, and -1.6 meters (again, in base coordinates).  Inspection of
the plots clearly shows that a rapid reduction in cross sectional area occurs at a roll of
approximately 11º.  Before this point, however, the cross sectional area remains more or less
constant.  This points out the fact that the available workspace may be significantly reduced when
the production of complex contoured parts calls for large orientation changes of the spindle
platform.

The calculations of workspace volume further demonstrate the workspace variation due to
spindle platform orientation changes.  Figure 14 plots the workspace volume of the hexapod
machine tool as a function of roll.  For a vertical spindle, the workspace has a volume of
approximately 2.4 cubic meters.  The volume remains essentially constant until a roll angle of 11º
is reached.  Beyond 11º, the workspace volume decreases in an approximately linear fashion. The
rapid decrease in workspace volume for platform roll beyond 11º is primarily due to the platform

spherical joint angle constraint.
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Figure 14. Workspace volume as a function of spindle platform roll (V0 = 2.3965 m3).

6.  CONCLUSIONS

A method to determine the workspace of a Stewart platform using a numerical spherical search
has been presented and a case study completed using the experimental prototype Octahedral
Hexapod machine at NIST.  Workspace plots show that as the platform orientation of the hexapod
increases, the overall workspace volume decreases.  Thus, a tool path that requires large platform
rotations will be more constrained in available workspace than tool paths with near vertical
platform orientations.

The numerical search method was applied to two other Stewart platforms previously explored
by researchers.  Reconstructed workspace plots match the solutions developed by other
researchers.  More importantly, this method of workspace determination is beneficial in designing
new Stewart platform based machines.  The workspace for alternative platform configurations may
be explored by simply entering the machine geometry.  With a runtime of less than one minute, the
workspace plots can be quickly generated and examined.

7.  FUTURE WORK

One difficulty in presenting workspace research is that an infinite number of workspace plots
exist for most Stewart platform based machines.  However, one cannot expect to examine all
possible workspace figures to gain an understanding of the machine.  The difficulty lies in
communicating the characteristics of the workspace of a machine with the fewest number of
workspace plots.  This is essential in order to compare the performance of different parallel linked
mechanisms.  For example, if hexapod machine A has a larger workspace for a horizontal platform
than hexapod machine B, it does not necessarily mean it has a greater workspace at other platform
orientations.  A standard method to represent the workspace of Stewart platform and other
machines with coupled translational and rotational degrees of freedom needs to be developed.
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